
Community Detection in Large-Scale Complex Networks via
Structural Entropy Game

Yantuan Xian
Kunming University of Science and

Technology
Yunnan Key Laboratory of Artificial

Intelligence
Yunnan, China

xianyt@kust.edu.cn

Pu Li
Kunming University of Science and

Technology
Yunnan Key Laboratory of Artificial

Intelligence
Yunnan, China

lip@stu.kust.edu.cn

Hao Peng
Beihang University

Beijing, China
penghao@buaa.edu.cn

Zhengtao Yu∗
Kunming University of Science and

Technology
Yunnan Key Laboratory of Artificial

Intelligence
Yunnan, China

yuzt@kust.edu.cn

Yan Xiang
Kunming University of Science and

Technology
Yunnan Key Laboratory of Artificial

Intelligence
Yunnan, China

yanx@kust.edu.cn

Philip S. Yu
University of Illinois Chicago

Chicago, USA
psyu@uic.edu

ABSTRACT
Community detection is a critical task in graph theory, social net-
work analysis, and bioinformatics, where communities are defined
as clusters of densely interconnected nodes. However, detecting
communities in large-scale networks with millions of nodes and
billions of edges remains challenging due to the inefficiency and un-
reliability of existing methods. Moreover, many current approaches
are limited to specific graph types, such as unweighted or undi-
rected graphs, reducing their broader applicability. To address these
issues, we propose a novel heuristic community detection algorithm,
termed CoDeSEG, which identifies communities by minimizing the
two-dimensional (2D) structural entropy of the network within a
potential game framework. In the game, nodes decide to stay in
current community or move to another based on a strategy that
maximizes the 2D structural entropy utility function. Additionally,
we introduce a structural entropy-based node overlapping heuristic
for detecting overlapping communities, with a near-linear time
complexity. Experimental results on real-world networks demon-
strate that CoDeSEG is the fastest method available and achieves
state-of-the-art performance in overlapping normalized mutual
information (ONMI) and F1 score.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis; •Mathemat-
ics of computing→ Graph algorithms.
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 2, 2025, Sydney, Australia.
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Community detection, structural entropy, potential games, large-
scale networks

ACM Reference Format:
Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S.
Yu. 2025. Community Detection in Large-Scale Complex Networks via
Structural Entropy Game. In Proceedings of the ACM Web Conference 2025
(WWW ’25), April 28–May 2, 2025, Sydney, Australia. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Community refers to a set of closely related nodes within a network,
also known as a cluster or module in literature [15, 17]. Community
detection is a task that reveals fundamental structural information
within real-world networks, providing valuable insights by identi-
fying tightly knit subgroups. In drug discovery, for instance, detect-
ing protein functional groups facilitates the identification of novel,
valuable proteins [33]. In social event detection, analyzing message
groups within social streams helps to understand the development
trends of events and analyze public sentiment [9]. Community de-
tection also plays a role in recent retrieval-augmented generation
(RAG) applications, like GraphRAG [13]. Furthermore, commu-
nity detection has extensive applications across various domains,
including recommender systems [4], medicine [3], biomedical re-
search [34, 41], social networks [16, 39], and more.

As illustrated in Figure 1(b), most early research on commu-
nity detection has focused on disjoint clusters, where each node
belongs to a single community, and there is no overlap between
communities [7, 8, 15, 40, 45, 47, 53]. However, nodes often par-
ticipate in multiple communities in many real-world applications
(as depicted in Figure 1(c)), sparking a growing interest in detect-
ing overlapping communities [23, 38, 50]. Overlapping community
detection typically entails higher computational costs and time over-
head than disjoint community detection. In the past two decades,
numerous algorithms for overlapping community detection have

ar
X

iv
:2

50
1.

15
13

0v
1

 [
cs

.S
I]

 2
5

Ja
n

20
25

https://orcid.org/0000-0001-6411-4734
https://orcid.org/0009-0007-1410-4096
https://orcid.org/0000-0003-0458-5977
https://orcid.org/0000-0003-1094-5668
https://orcid.org/0000-0002-6475-638X
https://orcid.org/0000-0002-3491-5968
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S. Yu

been proposed, including those based on modularity [11], label
propagation [29, 51], seed expansion [20, 49], non-negative matrix
factorization [52], spectral clustering [48]. However, existing over-
lapping community detection methods [10, 18, 25, 52] struggle to
scale to networks with millions of nodes and billions of edges, often
requiring days or longer to produce results.

Many well-established and widely-used methods for large-scale
networks are typically limited to specific types of graphs, such as
unweighted or undirected graphs, thereby restricting their appli-
cability. For instance, algorithms like Bigclam [52] and SLPA [51]
detect overlapping communities in unweighted and undirected
graphs. Methods like Louvain [7], Leiden [45], and LPA [40] focus
on detecting non-overlapping communities in undirected graphs.
Detecting overlapping communities in weighted, directed, large-
scale networks remains a significant challenge.

In recent years, deep learning-based community detection mod-
els have achieved promising results by learning node embeddings
and detecting communities through node clustering or classifica-
tion [44, 54, 56]. However, due to the learning and encoding pro-
cesses of deep models, these methods demonstrate inefficiencies
when applied to large-scale networks[21, 43].

To tackle these challenges, we propose a novel algorithm named
CoDeSEG (Community Detection via Structural Entropy Game)
for detecting overlapping communities in large-scale complex net-
works. The proposed algorithm follows the game-theoretic inspired
community detection framework [10], named as community for-
mation game. In the game, we quantify the rewards and required
costs associated with nodes joining or leaving a community through
the changes in structural entropy. The Nash equilibrium of the game
directly corresponds to the network’s community structure, with
each node’s community memberships at equilibrium serving as the
output of the community detection algorithm.

The community-formation-game-based algorithm shows its ef-
fectiveness and efficiency in large-scale networks. Lyu et al. pro-
pose the FOX [32] algorithm, which measures the closeness be-
tween nodes and communities by approximating the number of
triangles in communities. Ferdowsi et al. introduce a two-phase
non-cooperative game model for community detection, where non-
overlapping communities are first identified using a local interac-
tion utility function, followed by identifying overlapping nodes
based on the payoffs derived from community memberships [14].

1
2

3

4

5

6

7

8

9

10

(a) Network

1
2

3

4

5

6

7

8

9

10

(b) Non-overlapping
Communities

Nodes belong to
a single community.

1
2

3

4

5

6

7

8

9

10

(c) Overlapping
Communities

Nodes may belong
to multiple communities.

Figure 1: Illustration of non-overlapping and overlapping
community structures in a network.

In contrast to these methods, we define the potential function as
the 2-dimensional structural entropy (2D SE) [27] of the network
and derive an efficient node utility function computable in approxi-
mately constant time. By applying the node utility to the community
formation game, we detect communities in large-scale networks
efficiently. We also present a structural entropy-based node over-
lap heuristic function to detect overlapping communities, which
can leverage the intermediate results of the community formation
game to speed up the algorithm. Moreover, the proposed algorithms
can apply to various graphs, whether unweighted, weighted, undi-
rected, or directed graphs, to produce stable, reliable community
structures in a unified framework. To our knowledge, CoDeSEG is
the fastest known algorithm for large-scale network community
detection. The algorithm’s simplicity also supports straightforward
parallelization, further enhancing its efficiency by computing the
node strategies concurrently. Experiments on real-world networks
demonstrate that CoDeSEG consistently outperforms baselines in
performance while incurring significantly lower time overhead
than the second-fastest baseline. The codes of CoDeSEG and base-
lines, along with datasets, are publicly available on GitHub1. In
summary, the contributions of this paper are as follows:
• We propose a novel heuristic algorithm for community de-

tection in large-scale networks, termed CoDeSEG. This algorithm
introduces two-dimensional structural entropy to define the poten-
tial function of the community formation game and derives a node
utility function with nearly constant time complexity.
• We design a two-stage algorithm for detecting overlapping

communities in diverse graphs. CoDeSEG identifies non-overlapping
communities through the proposed community formation game
and subsequently detects overlapping communities rapidly using a
node overlap heuristic function based on structural entropy.
• Experimental results on publicly available large-scale real-

world networks demonstrate that the CoDeSEG algorithm outper-
forms state-of-the-art community detection algorithms regarding
overlapping NMI and F1 scores, and significantly reducing detection
time. Compared to the fastest baseline method, CoDeSEG achieves
an average speedup of 45 times in detection time.

2 PRELIMINARIES
In this section, we summarize the concepts and definitions related
to the background of our work, including community detection,
community formation games, and structural entropy.

2.1 Community Detection
The goal of community detection is to identify communities where
the density of edges within a community exceeds that between
communities, while accounting for nodes that may belong to mul-
tiple communities. Given a graph 𝐺 = (V, E), where V is the set
of nodes (vertices), E is the set of edges (links) connecting the
nodes, community detection algorithms find a set of communities
P = {C1, C2, . . . , C𝑘 }, where each C𝑖 ⊆ V is a network community.
In an overlapping community detection task, nodes 𝑥 ∈ V can
belong to more than one community.

1https://github.com/SELGroup/CoDeSEG

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

2.2 Community Formation Game
Chen et al. [10] propose a game-theoretic-based community de-
tection framework, named community formation game, that
simulates the strategy selection and interactions of nodes within a
network to identify community structures. In the game, each node
𝑥 ∈ V is treated as a rational participant (player), consistently choos-
ing the best strategy (community) that maximizes utility function.
When the game converges to a Nash equilibrium, it corresponds
to the communities the algorithm detects. We present relevant
definitions, as follows:

Definition 2.1 (Strategy Profile). A strategy profile is a combina-
tion of strategies chosen by all players in the game. If there are
𝑛 players in the game, and each player 𝑖 has a set of strategies 𝑆𝑖 ,
then a strategy profile 𝑠 is a tuple 𝒔 = (𝑠1, 𝑠2, . . . , 𝑠𝑛), where 𝑠𝑖 ∈ 𝑆𝑖
is the strategy chosen by player 𝑖 .

Definition 2.2 (Utility Function). A utility (payoff) function rep-
resents the benefit a player receives based on the chosen strategies.
For a player 𝑖 , the utility function is denoted by 𝑢𝑖 : 𝑆 → R, where
𝑆 is the set of all possible strategy profiles. The function 𝑢𝑖 (𝑠) gives
the payoff to player 𝑖 when the strategy profile 𝒔 is played.

Definition 2.3 (Potential Game). There exists a potential function
𝜑 : 𝑆 → R, for any player 𝑖 and any two strategy profiles 𝒔 and 𝒔′

differing only in the strategy of player 𝑖 , the change in the potential
function equals the change of player 𝑖’s payoff:

𝜑 (𝒔′) − 𝜑 (𝒔) = 𝑢𝑖 (𝑠′) − 𝑢𝑖 (𝑠) (1)

where 𝑢𝑖 is the utility function for player 𝑖 . Algorithms for learning
in potential games, such as best response dynamics, are capable of
converging to a Nash equilibrium. The Nash equilibrium refers to
a stable state in multiplayer games in which no player can improve
their outcome by unilaterally altering their strategy.

2.3 Structural Entropy
Structural entropy (SE) quantifies uncertainty and information con-
tent in complex networks, with lower values indicating more or-
dered structures and higher values reflecting greater disorder [27].
Communities within a network can be identified by minimizing its
2D structural entropy. Suppose P = {C1, C2, . . . , C𝑘 } is a partition
of the network 𝐺 , the 2D structural entropy is defined as:

H2 (P) = −
∑︁
c∈P

(
𝑔c

𝑣𝜆
log

𝑣c

𝑣𝜆
+

∑︁
𝑥∈c

𝑑𝑥

𝑣𝜆
log

𝑑𝑥

𝑣c

)
, (2)

where 𝑑𝑥 is the degree of node 𝑥 , 𝑣𝜆 is the volume of the network.
𝑔c and 𝑣c represent the volume and cut of community c, respec-
tively. For a more detailed definition of structural entropy, refer to
Appendix B.

3 METHODOLOGY
This section introduces the proposed algorithm CoDeSEG. Sec-
tion 3.1 presents the structural entropy-based heuristic for the com-
munity formation game, followed by Section 3.2, which details key
strategy computations. The full community detection algorithm is
outlined in Section 3.3, and Section 3.4 analyzes its time complexity.

3.1 Structural Entropy based Heuristic Function
The proposed algorithmmodels community formation as a potential
game, where the potential function is the network’s 2D structural
entropyH2 (P). Each node selects the community thatmost reduces
this entropy as its optimal strategy. When the game converges to
a Nash equilibrium, yielding communities with a minimized two-
dimensional structural entropy. Consider a node in 𝐺 adopting a
strategy, such as altering its community membership, resulting in
a new partition denoted by P ′. We define the heuristic function
Δ as the change in the potential function:

Δ = H2 (P) −H2 (P ′) . (3)

In the disjoint community formation game, each node aims to
maximize the value of Δ by moving to the best adjacent community,
resulting in a partition with reduced 2D structural entropy. A node
can choose from three strategies: Stay, Leave and be alone, and
Transfer to another community.

Stay: Node 𝑥 decides to stay in the current community, then the
partition P remains unchanged, P ′ = P . The value of heuristic
function ΔS is:

ΔS = H2 (P) −H2 (P ′) = 0. (4)

Leave and be alone: Suppose the original partition is P =

{C1, C2, . . . , C𝑘 } and when node 𝑥 leaves its community C𝑘 , result-
ing a new partitionP ′ = {C1, C2, . . . , C′𝑘 , {𝑥}}, where C𝑘 = C′

𝑘
∪{𝑥}.

The value of heuristic function ΔL (𝑥, C𝑘) is:
ΔL (𝑥, C𝑘) =H2 (P) −H2 (P ′)

=H2 (C𝑘) −H2 (C′
𝑘
) −H2 ({𝑥}) .

(5)

The calculation details for Equation (5) are provided in Section 3.2.
If community C𝑘 is a singleton, then ΔL (𝑥, C𝑘) = 0.

Transfer to another community: Suppose 𝑥 transfers from C1
to C𝑘 , the original partition isP = {C1, C2, . . . , C𝑘 } and the new par-
tition is P ′ = {C′1, C2, . . . , C′𝑘 }, where C

′
1 = C1\{𝑥}, C′𝑘 = C𝑘 ∪ {𝑥}.

The transfer strategy can be seen as a composite transformation
of two steps. Firstly, node 𝑥 leaves C1 and does not join any com-
munity, which yields an intermediate P𝑚 = {C′1, C2, . . . , C𝑘 , {𝑥}}.
Secondly, node 𝑥 join C𝑘 , resulting in new partition P ′. We can
easily figure out that the second step is an inverse transformation of
the Leave and be alone strategy. Therefore, the value of the heuristic
function ΔT (𝑥, C1, , C𝑘) can be expressed as:

ΔT (𝑥, C1, C𝑘) = H2 (P) −H2 (P ′)
= (H2 (P) −H2 (P𝑚)) + (H2 (P𝑚) −H2 (P ′))
= ΔL (𝑥, C1) − ΔL (𝑥, C𝑘) .

(6)

Since a node 𝑥 may have several adjective target communities, we
denote the best-transferring with max ΔT as ΔT (𝑥, Cbest).

In our community formation game, a node will only join a new
community if it decreases the network’s 2D structural entropy. Con-
sequently, a node will prefer to stay in its current community unless
another community offers a further reduction in 2D structural en-
tropy. Thus, Leave and be alone strategy is optional. Therefore, in
our disjoint community formation game algorithm, node 𝑥 selects
its movement strategy according to the following formula:

𝑆 (𝑥) = max(ΔS,ΔT (𝑥, Cbest)) . (7)

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S. Yu

1
2

3

4

5

6

7

8

9

10

Input network

1
2

3

4

5

6

7

8

9

10

Each node as an
individual community.

I. Initialize communities

Node 1 transfer
from C1 to C2,
C2 = {1, 2}.

Node 2 stay in C2,
C2 = {1, 2}.

Node 3 transfer
from C3 to C2,
C2 = {1, 2, 3}.

1
2

3

4

5

6

7

8

9

10

Each node iteratively selects a community using 2D SE game.
Non-overlapping
Communities

II. Non-overlapping community detection

Node 4 Overlaps
in C2 = {1, 2, 3, 4}
and C6 = {4, 5, 6, 7}.

Node 5 does
Not Overlap.

Node 7 Overlaps
in C6 = {4, 5, 6, 7}
and C9 = {7, 8, 9, 10}.

Each node is greedily overlapped by 2D SE.

1
2

3

4

5

6

7

8

9

10

Overlapping
Communities

III. Overlapping community detection

Figure 2: Overview of the proposed CoDeSEG algorithm.

After identifying disjoint communities, we propose using a struc-
tural entropy heuristic to determine whether a node 𝑥 should over-
lap between communities.

Overlap nodes: Suppose the partition is P = {C1, C2, . . . , C𝑘 },
for a node 𝑥 ∉ C𝑘 , exists 𝑦 ∈ Neighbors(𝑥), 𝑦 ∈ C𝑘 . If we copy
(overlap) 𝑥 to community C𝑘 , we create a new overlapping partition
P ′ = {C1, C2, . . . , C′𝑘 }, where C

′
𝑘
= C𝑘 ∪ {𝑥}. Since the copy action

does not affect the origin community, we define the overlapping
heuristic function as follows:

ΔO (𝑥, C𝑘) = H2 (P) −H2 (P ′) = −Δ𝐿 (𝑥, C′𝑘) . (8)

If ΔO (𝑥, C𝑘) > 0, it means the overlap action reduces the partition’s
structural entropy. However, this criterion may allow excessive
node overlapping. To address this, we propose using the average
value of ΔL (𝑥𝑖 , C𝑘) for nodes in the community C𝑘 as a threshold.
Nodes can only overlap with C𝑘 if their ΔL (𝑥, C𝑘) exceeds this
threshold.

3.2 Efficient computation of ΔL(𝑥, C𝑘)
The formulas for the strategies above highlight that efficiently
completing the community formation game depends on quickly
computing the node leave strategy. By deriving Equation (5), we
obtain an efficient formula for computing ΔL (𝑥, C𝑘):

ΔL (𝑥, C𝑘) = H2 (P) −H2 (P ′)

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆
+
𝑣c′

𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣c′
𝑘

,
(9)

where 𝑣c′
𝑘
represents the volume of C′

𝑘
, and 𝑔c′

𝑘
denotes the sum of

the degrees (weights) of the cut edges of C′
𝑘
. The detailed derivation

is provided in Appendix C.

By caching all community volumes {𝑣c1 , 𝑣c2 , . . . , 𝑣c𝑘 } and cut
edge summations {𝑔c1 , 𝑔c2 , . . . , 𝑔c𝑘 }, computing 𝑣c′

𝑘
and𝑔c′

𝑘
becomes

straightforward, allowing us to calculate ΔL (𝑥, C𝑘) in constant time
complexity, 𝑂 (1). For an undirected graph, 𝑣c′

𝑘
and 𝑔c′

𝑘
can be com-

puted using the following equations:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 + 2𝑑 in𝑥 − 𝑑𝑥 , (10)

where 𝑑 in𝑥 denotes the sum of edge weights between node 𝑥 and its
neighbor nodes within community C𝑘 . The proposed strategies can
be easily adapted for directed networks by separately considering
the in-degree and out-degree of node 𝑥 relative to community C𝑘 .
Consequently, Equation (10) is updated accordingly:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 + 𝑑 in𝑥 + 𝑑out𝑥 − 𝑑𝑥 . (11)

Once a node 𝑥 is transferred to a new community, we will up-
date the statistics of the target and source communities using the
following formulas,

𝑣c𝑡 ← 𝑣c𝑡 + 𝑑𝑥 , 𝑣c𝑘 ← 𝑣c′
𝑘
,

𝑔c𝑡 ← 𝑔c𝑡 − 2𝑑 in𝑥 + 𝑑𝑥 , 𝑔c𝑘 ← 𝑔c′
𝑘
.

(12)

For directed graphs, we can easily derive similar formulas for up-
dating community statistics.

3.3 Community Detection Algorithm
After developing effective methodologies for community formation
games, we introduce a new two-stage algorithm for overlapping
community detection. Figure 2 provides an overview of this algo-
rithm. In the non-overlapping detection phase, each node 𝑥 sequen-
tially implements the best strategy from Equation (7) until all nodes
are assigned to their communities. In the overlapping phase, nodes

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

Algorithm 1: Non-overlapping Community Detection.
Input: Graph 𝐺 = (V, E); Termination threshold 𝜏𝑛 .
Output: Non-overlapping communities (partition) P of 𝐺 .

1 P ← Each node as an individual community.
2 Initialize community volumes {𝑣c1 , 𝑣c2 , . . . , 𝑣c𝑛 }.
3 Initialize cut edge summations {𝑔c1 , 𝑔c2 , . . . , 𝑔c𝑛 }.
4 while true do
5 Δsum ← 0, 𝑀 ← 0
6 for node 𝑥 ∈ V do
7 C𝑥 ← Community contains 𝑥
8 𝑡𝑐 ← Index of community C𝑥
9 𝑡 ← 𝑡𝑐 ⊲ 𝑡𝑐 means stay in C𝑥

10 ΔL (𝑥, C𝑥) ← Eq.9
11 Δmax ← ΔL (𝑥, C𝑥)
12 for 𝑘-th adjacent community C𝑘 of node 𝑥 do
13 ΔL (𝑥, C𝑘) ← Eq.9
14 ΔT (𝑥, C𝑥 , C𝑘) ←Eq.6
15 if ΔT (𝑥, C𝑥 , C𝑘) > Δmax then
16 Δmax ← ΔT (𝑥, C𝑥 , C𝑘)
17 𝑡 ← 𝑘

18 if 𝑡 ≠ 𝑡𝑐 then
19 Transfer 𝑥 from C𝑥 to C𝑡
20 Update statistics of C𝑥 , C𝑡 by Eq.12
21 𝑀 ← 𝑀 + 1.
22 Δsum ← Δsum + Δmax

23 if 𝑀 = 0 or Eq. 13 is satisfied then
24 Break

25 return P

𝑥 can overlap multiple communities if the overlap action meets the
specified threshold.

3.3.1 Non-overlapping Community Detection. We propose a non-
overlapping community detection algorithm designed to minimize
2D structural entropy using a potential game, where the optimal
strategy is computed by Equation (7). Once the game reaches a Nash
equilibrium, the communities stabilize and no longer change. The
pseudo-code of the proposed algorithm is provided in Algorithm 1.

In Algorithm 1, we initialize each node as an individual cluster
and compute their volumes, setting the cut edges’ summations as
the node degrees (lines 1-3). In a directed network, the volumes of
these communities are node in-degrees, and the summations of cut
edges are node out-degrees.

The heart of our algorithm lies in an iterative loop of community
formation games. We evaluate every node 𝑥 in each iteration and
determine the optimal strategy for 𝑥 to significantly minimize the
2D structural entropy of the graph (lines 7-17). To get the best
strategy for a node, we firstly compute the heuristic ΔL (𝑥, C𝑥) that
provides a measure of the impact when node 𝑥 leaves its current
community. The maximum heuristic function value Δmax is initially
set to ΔL (𝑥, C𝑥), and the target community index 𝑡 is set to 𝑡𝑐
indicating stay in the current community (lines 7-11). Then, we
evaluate each adjacent community C𝑘 to determine if moving node

𝑥 to any of these communities would result in a greater heuristic
function value (lines 12-17). For each C𝑘 , we compute the transfer
heuristic ΔT (𝑥, C𝑥 , C𝑘) and compare it to the maximum heuristic
function value. If moving to an adjacent community C𝑘 offers a
larger heuristic function value, we update Δmax and set 𝑡 to the
index of community C𝑘 (lines 15-17). Finally, we find the optima
index 𝑡 and the maximum heuristic function value Δmax.

Suppose the strategy indicates that node 𝑥 should move to an-
other community. We transfer 𝑥 from its current community C𝑥
to the target community C𝑡 (line 19) and update the statistics of
the source and target communities, such as adjusting community
volumes and cut edge summations via Equation (12) (line 20).

At the end of each iteration, if all nodes choose to stay in their
current community (i.e.,𝑀 = 0), the algorithm is considered con-
verged. In practice, we introduce a stopping criterion: if the average
of ΔT decreases significantly compared to the initial average node
entropy, it suggests that further adjustments will have little im-
pact on improving the community structure. Formally, the stopping
criterion is defined as:

Δ𝑠𝑢𝑚
𝑀
≤ 𝜏𝑛

|𝑉 |
∑︁
𝑥∈𝑉
−𝑑𝑥
𝑣𝜆
· log

𝑑𝑥

𝑣𝜆
, (13)

where Δ𝑠𝑢𝑚 represents the change in the graph’s 2D structural
entropy during the current iteration, 𝑀 denotes the number of
nodes that changed communities, and 𝜏𝑛 is a hyper-parameter, with
a range of (0, 1). In the end, our algorithm outputs the partition P ,
representing the final assignment of nodes into non-overlapping
communities.

3.3.2 Overlapping Community Detection. The overlapping commu-
nity detection algorithm begins with a non-overlapping partitionP
of the network𝐺 . The goal of the overlapping community detection
(Algorithm 2) is to generate a set of overlapping communities P𝑜

of𝐺 . Initially, P𝑜 is identical to P . For each node 𝑥 in the network,
the algorithm iterates over all its adjacent communities C𝑘 . It com-
putes the overlapping heuristic function ΔO (𝑥, C𝑘). If the heuristic
function exceeds the overlap threshold 𝜏𝑜 , we overlap node 𝑥 to
community C𝑘 . We define the overlap threshold 𝜏𝑜 as the average
of node heuristic function values,

𝜏𝑜 =
𝛾

|C𝑘 |
∑︁

𝑥𝑖 ∈C𝑘
−Δ𝐿 (𝑥𝑖 , C𝑘), (14)

where 𝛽 represents the overlap factor, which is employed to actively
regulate the degree of community overlapping. The iterative process

Algorithm 2: Overlapping community detection.
Input: Non-overlapping communities P .
Output: Overlapping communities P𝑜

1 P𝑜 ← P
2 for node 𝑥 in V do
3 for 𝑘-th adjacent community C𝑘 of node 𝑥 do
4 ΔO (𝑥, C𝑘) ← Eq.8
5 if ΔO (𝑥, C𝑘) > 𝜏𝑜 then
6 Overlap node 𝑥 to C𝑘 in P𝑜

7 return P𝑜

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S. Yu

ensures that nodes overlap in communities, significantly reducing
graph 2D structural entropy.

3.4 Time Complexity
The time complexity of the proposed community detection algo-
rithm is 𝑂 (𝐼 · 𝑑max · 𝑁), where 𝑁 denotes the number of nodes in
the graph, 𝑑max represents the maximum degree of any node, and 𝐼
is the number of iterations required for the algorithm to converge
to a stable partition.

In the non-overlapping detection phase (Algorithm 1), the algo-
rithm initially sets each node as an individual cluster and initializes
community volumes and cut edge summations, which takes 𝑂 (𝑁)
time. For each node, the best strategy computation for each node
depends on its degree, taking 𝑂 (𝑑avg) time, since we can compute
ΔL (𝑥,𝐶) in 𝑂 (1) time (Section 3.2). Therefore, evaluating and up-
dating all nodes in one iteration requires𝑂 (𝑑avg ·𝑁). Overall, given
that the algorithm runs for 𝐼 iterations, the total time complexity
is 𝑂 (𝐼 · 𝑑avg · 𝑁). This complexity indicates that the algorithm’s
performance scales linearly with the number of nodes and their av-
erage degree, with the number of iterations needed for convergence
influencing the overall computational effort. In the overlapping
community detection phase, the algorithm’s time complexity is
𝑂 (𝑑avg · 𝑁). This complexity arises because each node is processed
by iterating over its adjacent communities.

Owing to each node’s greedy selection of the most suitable com-
munity, our algorithm converges rapidly, often within 10 iterations
(see Section 4.4). For large-scale networks where 𝑑avg ≪ 𝑁 , the
algorithm’s complexity approaches𝑂 (𝑁), enabling it to detect over-
lapping communities on graphs with millions of nodes in seconds.

3.5 Parallelism Implementation
Parallelization can fully exploit the multi-core architecture of mod-
ern CPUs, significantly reducing the algorithm’s runtime. The pro-
posed algorithm is readily parallelizable. In our parallelized CoDe-
SEG algorithm, each node in different threads independently calcu-
lates the optimal strategy based on the current partition. During the
execution of the movement strategy, a mutex lock ensures the cor-
rect update of statistics such as 𝐶𝑘 and 𝑔𝑐 . It is crucial to note that
when the volume and cut of a community are concurrently updated
by multiple threads, the increments must be recalculated. However,
it is worth mentioning that as the algorithm progresses, the number
of nodes requiring movement decreases sharply, thereby enhancing
the acceleration effect of parallelism.

During the overlapping community detection phase, our algo-
rithm is inherently parallelizable. A node’s inclusion in an overlap-
ping community is determined by the change in entropy resulting
from its addition, which depends only on the outcomes of non-
overlapping community detection and the node’s connections to
those communities. This allows the overlapping strategies for each
node to be calculated concurrently. Experiments in section 4.5 show
that parallel CoDeSEG can significantly reduce the run time on
large networks.

4 EXPERIMENTS
In this section, we conduct extensive experiments to validate the
effectiveness and superiority of the proposed algorithm. Our goal

is to address the following four key research questions: RQ1: How
does the CoDeSEG perform in overlapping and non-overlapping
community detection tasks compared to baselines? RQ2: How does
the detection efficiency of CoDeSEG on different networks compare
to the baselines? RQ3: Can CoDeSEG achieve fast convergence,
and how do key hyperparameters impact its performance? RQ4:
How does parallelization of CoDeSEG influence its performance
and efficiency?

4.1 Experimental Setups
4.1.1 Evaluation Metrics. For datasets with ground truth, the main
goal of the experiment is to evaluate how closely the detected
results match the ground truth. We use two evaluation metrics: the
Average F1-Score (F1) [31, 52] and Overlapping Normalized Mutual
Information (ONMI) [25]. For non-overlapping detection tasks, we
use the non-overlapping NMI. More details on these metrics are
provided in Appendix D.

4.1.2 Datasets. We conduct overlapping community detection ex-
periments on seven large-scale unweighted networks with ground
truth from SNAP [22], where the Wiki dataset is a directed net-
work, and the others are undirected and unweighted. Additionally,
we perform non-overlapping community detection experiments
on two real-world weighted social networks: Tweet12 [37] and
Tweet18 [35]. The dataset statistics are shown in Table 1, with
detailed descriptions provided in Appendix E.

4.1.3 Baselines. To assess the performance of the proposed algo-
rithm across various networks, we compare it with four sophisti-
cated overlapping community detection methods (SLPA [51], Big-
clam [52], NcGame [14], and Fox [32]) and four proven non-
overlapping community detection methods (Louvain [7], DER
[24], Leiden [45], and FLPA [46]). For additional experimental
details, including the hyperparameter settings and descriptions of
the baseline algorithms, please refer to Appendix F.

4.2 Main Results (RQ1)
Tables 2 and 3 illustrate that CoDeSEG performs exceptionally in
overlapping and non-overlapping community detection tasks. In
the overlapping detection scenario, it consistently ranks first or
second in ONMI and F1 scores across all seven datasets, particu-
larly excelling in YouTube, Orkut, Friendster, and Wiki, where it
achieves the highest values. Compared to label propagation-based

Table 1: Statistics of datasets.

Dataset #Nodes #Edges Avg. Deg #Cmty

Amazon 334,863 925,872 5.530 75,149
YouTube 1,134,890 2,987,624 5.265 8,385
DBLP 317,080 1,049,866 6.622 13,477
LiveJournal 3,997,962 34,681,189 17.349 287,512
Orkut 3,072,441 117,185,083 76.281 6,288,363
Friendster 65,608,366 1,806,067,135 55.056 957,154

Wiki 1,791,489 28,511,807 15.915 17,364

Tweet12 68,841 10,141,672 147.320 503
Tweet18 64,516 17,926,784 277.866 257

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

Table 2: Results on unweighted overlapping networks (%). The best results are bolded, and the second-best results are underlined.
* indicates the results when treating directed networks as undirected. N/A indicates the runtime extended beyond a week.

Dataset Amazon YouTube DBLP LiveJournal Orkut Friendster Wiki

Metric ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1 ONMI F1

SLPA 9.05 34.37 4.58 26.16 4.45 23.27 2.55 22.29 0.12 8.51 0.03 2.34 0.48∗ 12.16∗
Bigclam 7.62 33.30 1.47 27.78 5.96 24.91 2.05 10.67 0.10 11.72 N/A N/A N/A N/A
NcGame 9.94 36.01 1.23 11.37 4.89 23.94 1.33 7.96 0.07 2.20 0.19 0.10 0.02∗ 10.96∗
Fox 8.88 29.04 6.67 31.77 7.34 23.85 4.18 26.79 0.47 24.07 0.56 19.03 0.45∗ 10.80∗
CoDeSEG 10.75 34.51 8.17 36.80 7.21 25.34 3.75 28.46 0.49 25.26 0.73 19.21 2.28 18.92

Improve ↑ 0.81 ↓ 1.50 ↑ 1.50 ↑ 5.03 ↓ 0.13 ↑ 1.23 ↓ 0.43 ↑ 1.67 ↑ 0.02 ↑ 1.19 ↑ 0.17 ↑ 0.18 ↑ 1.83 ↑ 6.76

Table 3: Results on weighted non-overlapping networks (%).

Method Louvain DER Leiden FLPA CoDeSEG Improve

Twe-
et12

NMI 52.93 10.62 54.37 79.39 83.41 ↑ 4.02
F1 39.63 19.20 42.01 65.14 66.61 ↑ 1.47

Twe-
et18

NMI 47.85 11.94 48.81 49.25 73.27 ↑ 24.02
F1 53.60 32.76 52.13 65.05 69.77 ↑ 4.72

SLPA and Non-negative Matrix Factorization-based Bigclam, CoDe-
SEG consistently outperforms these algorithms in ONMI and F1
scores. Notably, SLPA and Bigclam experience significant perfor-
mance declines on larger networks such as Orkut and Friendster.
While NcGame records a higher F1 score on the Amazon dataset,
its performance is inconsistent across other datasets. Additionally,
FOX, which ranks second to CoDeSEG, relies on a complex heuristic
that impedes efficiency. CoDeSEG uniquely supports community
detection in the large-scale directed network Wiki, demonstrating
a significant performance drop in baseline methods when Wiki is
treated as an undirected network. Specifically, CoDeSEG enhances
ONMI by 381.25% and F1 by 55.59% compared to the best baseline,
SLPA, highlighting its advantages in directed network contexts.

In the non-overlapping detection scenario (as shown in Table 3),
CoDeSEG outperforms all baseline algorithms, showcasing supe-
rior stability and robustness. Compared to the second-best method,
FLPA, CoDeSEG achieves average improvements of 21.80% and
4.75% in NMI and F1 scores, respectively. Compared to modularity-
based methods (Leiden and Louvain), it shows even greater im-
provements, with average gains of 51.85% to 69.27% in NMI and
44.86% to 46.28% in F1 scores. Moreover, DER’s performance on both
the Tweet12 and Tweet18 networks is notably inferior to that of
CoDeGSE. Overall, CoDeSEG’s superior performance underscores
the effectiveness of the utility function that combines potential
games with structural entropy in uncovering network community
structures. Further details on network visual analysis can be found
in Appendix G.

4.3 Efficiency of CoDeSEG (RQ2)
As shown in Table 4, the detection efficiency of CoDeGSE signifi-
cantly surpasses that of all baseline methods, with efficiency gains
increasing as the network size expands. In the overlapping net-
work detection tasks, CoDeGSE exhibits particularly substantial
efficiency improvements on networks such as LiveJournal, Orkut,
Friendster, and Wiki. On average, CoDeSEG is 45 times faster than

Table 4: Time consumption of different algorithms (Sec).

Unweighted overlapping networks

Dataset Bigclam SLPA NcGame Fox CoDeSEG Ratio

Amazon 482 369 44 15 2 7.5
YouTube 442764 852 1374 220 6 36.7
DBLP 2106 263 62 15 2 7.5
LiveJournal 1064 11343 4147 2330 51 20.9
Orkut 2899 21429 37590 73385 279 10.4
Friendster > 7day 298536 191556 487397 5650 33.9

Wiki > 7day 4410 36233 15511 27 163.3

Weighted non-overlapping networks

Dataset Louvain DER Leiden FLPA CoDeSEG Ratio

Tweet12 26 3675 66 20 12 1.7
Tweet18 47 7622 149 45 15 3.0

the quickest baseline, NcGame. The proposed CoDeSEG converges
rapidly in just a few iterations, while Bigclam requires many more.
Moreover, due to the uncertainty in Bigclam’s convergence pro-
cess, its detection time on the YouTube network is considerably
longer than on larger networks like LiveJournal and Orkut. For
SLPA, the detection speed is constrained by the predefined number
of iterations. NcGame fails to dynamically update necessary vari-
ables during detection, resulting in additional computation time
on large networks. Additionally, for Fox, detection time increases
proportionately to the number of overlapping nodes.

In detecting non-overlapping networks, CoDeGSE achieves a
418-fold improvement in efficiency compared to DER, while its
efficiency increases by 2.4 times compared to the fastest baseline,
FLPA. The relatively modest improvement in efficiency compared
to FLPA can be attributed to the smaller scales of the Tweet12 and
Tweet18 networks, where the efficient derivation of the CoDeGSE
utility function demonstrates greater advantages in larger-scale
networks. CoDeSEG’s superior performance and efficiency make it
highly scalable for large, complex, real-world networks.

4.4 Convergence of CoDeSEG (RQ3)
Figure 3 presents the convergence of CoDeSEG during the non-
overlapping detection phase on the Amazon and DBLP networks.
The structural entropy and node movements drop sharply within
the first three iterations, with convergence achieved by the fifth

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S. Yu

264608

75127
21226

6067 1666 516 154 58 14 0

12.44530

1 2 3 4 5 6 7 8 9 10

0

1

2

3
×105

Iteration

 Stay
 Transfer

0 1 2 3 4 5 6 7 8 9 10

6

8

10

12

2D
 S

E

Iteration

(a) Amazon.

236074

65259
14964 3847 948 312 110 22 18 6 0

12.08320

1 2 3 4 5 6 7 8 9 10 11

0

1

2

3
×105

Iteration

 Stay
 Transfer

0 1 2 3 4 5 6 7 8 9 10 11

6

8

10

12

2D
 S

E

Iteration

(b) DBLP.

Figure 3: Convergence of CoDeSEG on Amazon and DBLP.

1 2 3 4 5 6 7 8 9 10
0.28

0.30

0.32

0.34

Iteration

n

n n

(a) Amazon.

1 2 3 4 5 6 7 8 9 10 11

0.20

0.22

0.24

0.26

Iteration

n

n n

(b) DBLP.

Figure 4: F1 score of each iteration on Amazon and DBLP.

iteration, where moved nodes represent only 1/200 of the total. The
algorithm’s linear complexity and rapid convergence make it highly
efficient for large-scale complex networks. Furthermore, CoDe-
SEG’s stable convergence process has no node repeated adjustments
in the last iteration and yields an accurate Nash equilibrium.

The influence of a few unstable nodes during the non-overlapping
detection phase is minimal. Although some nodes may not join
optimal communities initially, they are correctly replicated during
the overlapping phase. As Figure 4 shows, the F1 score stabilizes by
the 5th iteration for Amazon and the 4th for DBLP. We also analyze
the termination threshold 𝜏𝑛 , finding that a high 𝜏𝑛 (e.g., 0.4) may
cause premature termination and reduced performance, while a
low 𝜏𝑛 (e.g., 0.2) increases iteration time. A balanced 𝜏𝑛 (e.g., 0.3)
can maintain performance while improving detection efficiency.

4.5 Parallelization Study (RQ4)
The primary objective of parallelizing the algorithm is to signifi-
cantly reduce runtime while preserving as much of the algorithm’s
performance as possible. To assess the impact of varying thread
counts on performance and efficiency, we conduct experiments on
the LiveJournal and Orkut networks using different thread configu-
rations (1, 2, 4, 8, 16, 32, 64), as presented in Figure 5. The results
reveal that although CoDeSEG’s partitioning outcomes show mi-
nor variations across different thread counts, these differences are
negligible compared to the ground truth communities. Additionally,
runtime reduction does not follow a strictly linear pattern as thread
count increases. For instance, runtime with 32 threads is shorter in
both networks than 64 threads. This can be attributed to the fact that
as thread count rises, computational discrepancies between threads
may lead to an increase in the number of iterations, thus prolonging
the total runtime. Moreover, with more threads, overhead related to
thread initialization, lock contention, and synchronization delays
also rise. Therefore, balancing task partitioning granularity and the
efficiency gains of parallelization is crucial when determining the
optimal number of threads.

51.35

1 2 4 8 16 32 64
0.10
0.15
0.20
0.25

Thread count

1 2 4 8 16 32 64
36.0
40.5
45.0
49.5

(a) LiveJournal.

278.68

1 2 4 8 16 32 64
0.12
0.16
0.20
0.24

Thread count

1 2 4 8 16 32 64
100
150
200
250

(b) Orkut.

Figure 5: F1 scores and runtime on LiveJournal and Orkut
with different threads.

5 RELATEDWORK
Community detection has a 20-year history, during which numer-
ous algorithms have been developed using various methods such
as modularity [7, 11, 19, 45], label propagation [29, 46, 51], seed ex-
pansion [2, 20, 49, 55], non-negative matrix factorization [6, 30, 52],
spectral clustering [5, 28, 48]. However, community detection in
large-scale networks remains a challenging task.

Game theory-based community detection methods focus on
decision-making processes where one agent’s choice affects others.
Early approaches like Chen’s non-cooperative game-based algo-
rithm inspired further work on utility functions for disjoint commu-
nity detection [10]. Alvari et al. [1] propose to use structural equiv-
alence to detect overlapping community structures, while Crampes
et al. [12] introduce a potential game for node reassignment, al-
though it requires knowing the number of clusters. However, most
game-theoretic-based algorithms proposed in the last decay are not
scalable for large networks.

For large-scale community detection, Lyu et al. propose the
FOX [32] algorithm, which measures the closeness between nodes
and communities by approximating the number of triangles in com-
munities. Ferdowsi et al. [14] propose a two-phase non-cooperative
game model that detects non-overlapping communities by a local
interaction utility function, then identifies overlapping nodes lever-
age payoffs acquired from communities membership. In contrast to
existing approaches, we propose a utility function based on struc-
tural entropy that facilitates efficient community detection, while
accounting for the global partition of the network.

6 CONCLUSION
In this paper, we propose a fast heuristic community detection al-
gorithm by minimizing the two-dimensional structural entropy of
networks within the framework of a potential game. By designing
a utility function with nearly linear time complexity, our algorithm
can efficiently detect high-quality communities in large-scale net-
works, completing the process within minutes, even for networks
comprising millions of nodes. Experimental results on real-world
datasets demonstrate its practicality and efficiency. We envision
broad applications for the proposed algorithm across diverse fields,
including social networks, biomedicine, and e-commerce. While
this study focuses on community detection in static graphs, an im-
portant future direction would be to extend the algorithmic frame-
work to dynamic graph community detection, further enhancing
its utility in evolving network structures.

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

ACKNOWLEDGMENTS
This work is supported by the NSFC through grants 62266028,
62322202, U21B2027, and 62266027, Yunnan Fundamental Research
Projects under grant 202301AS070047, Special Fund for Key Pro-
gram of Science and Technology of Yunnan Province, China through
grants 202402AD080002, 202302AD080003 and 202402AG050007.
Philip S. Yu is supported in part by NSF under grants III-2106758,
and POSE-2346158.

REFERENCES
[1] Hamidreza Alvari, Sattar Hashemi, and Ali Hamzeh. 2011. Detecting overlapping

communities in social networks by game theory and structural equivalence con-
cept. In Proceedings of the Third International Conference on Artificial Intelligence
and Computational Intelligence. Springer, 620–630.

[2] Khawla Asmi, Dounia Lotfi, and Abdallah Abarda. 2022. The greedy coupled-
seeds expansion method for the overlapping community detection in social
networks. Computing 104, 2 (2022), 295–313.

[3] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. 2011. Network
medicine: a network-based approach to human disease. Nature reviews genetics
12, 1 (2011), 56–68.

[4] Partha Basuchowdhuri, Manoj Kumar Shekhawat, and Sanjoy Kumar Saha. 2014.
Analysis of product purchase patterns in a co-purchase network. In 2014 Fourth
International Conference of EAIT. IEEE, 355–360.

[5] Kamal Berahmand, Mehrnoush Mohammadi, Azadeh Faroughi, and Rojiar Pir
Mohammadiani. 2022. A novel method of spectral clustering in attributed net-
works by constructing parameter-free affinity matrix. Cluster Computing 25, 2
(2022), 869–888.

[6] Kamal Berahmand, Mehrnoush Mohammadi, Farid Saberi-Movahed, Yuefeng
Li, and Yue Xu. 2022. Graph regularized nonnegative matrix factorization for
community detection in attributed networks. IEEE Transactions on Network
Science and Engineering 10, 1 (2022), 372–385.

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[8] Yuwei Cao, Hao Peng, Angsheng Li, Chenyu You, Zhifeng Hao, and S Yu Philip.
2024. Multi-Relational Structural Entropy. In The 40th Conference on Uncertainty
in Artificial Intelligence.

[9] Yuwei Cao, Hao Peng, Zhengtao Yu, and Philip S. Yu. 2024. Hierarchical and
incremental structural entropy minimization for unsupervised social event de-
tection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
8255–8264.

[10] Wei Chen, Zhenming Liu, Xiaorui Sun, and Yajun Wang. 2010. A game-theoretic
framework to identify overlapping communities in social networks. Data Mining
and Knowledge Discovery 21 (2010), 224–240.

[11] Hocine Cherifi, Gergely Palla, Boleslaw K Szymanski, and Xiaoyan Lu. 2019.
On community structure in complex networks: challenges and opportunities.
Applied Network Science 4, 1 (2019), 1–35.

[12] Michel Crampes and Michel Plantié. 2015. Overlapping community detection op-
timization and nash equilibrium. In Proceedings of the 5th International Conference
on Web Intelligence, Mining and Semantics. 1–10.

[13] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, and Jonathan Larson. 2024. From Local to Global: A Graph
RAG Approach to Query-Focused Summarization. arXiv:2404.16130

[14] Farhad Ferdowsi and Keivan Aghababaei Samani. 2022. Detecting overlapping
communities in complex networks using non-cooperative games. Scientific
Reports 12, 1 (2022), 11054.

[15] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[16] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A
user guide. Physics reports 659 (2016), 1–44.

[17] Santo Fortunato and Mark EJ Newman. 2022. 20 years of network community
detection. Nature Physics 18, 8 (2022), 848–850.

[18] Prem K Gopalan and David M Blei. 2013. Efficient discovery of overlapping
communities in massive networks. Proceedings of the National Academy of
Sciences 110, 36 (2013), 14534–14539.

[19] Kun Guo, Xintong Huang, Ling Wu, and Yuzhong Chen. 2022. Local community
detection algorithm based on local modularity density. Applied Intelligence 52, 2
(2022), 1238–1253.

[20] Alexandre Hollocou, Thomas Bonald, and Marc Lelarge. 2018. Multiple local
community detection. ACM SIGMETRICS PER 45, 3 (2018), 76–83.

[21] Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, Philip S. Yu, and
Weixiong Zhang. 2023. A Survey of Community Detection Approaches: From
Statistical Modeling to Deep Learning. IEEE Transactions on Knowledge and Data
Engineering 35, 2 (2023), 1149–1170.

[22] Leskovec Jure. 2014. SNAP Datasets: Stanford large network dataset collection.
Retrieved December 2021 from http://snap. stanford. edu/data (2014).

[23] Stephen Kelley. 2009. The existence and discovery of overlapping communities in
large-scale networks. Rensselaer Polytechnic Institute.

[24] Mark Kozdoba and Shie Mannor. 2015. Community detection via measure space
embedding. In Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems-Volume 2. 2890–2898.

[25] Andrea Lancichinetti, Santo Fortunato, and János Kertész. 2009. Detecting the
overlapping and hierarchical community structure in complex networks. New
journal of physics 11, 3 (2009), 033015.

[26] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics 78, 4 (2008), 046110.

[27] Angsheng Li and Yicheng Pan. 2016. Structural information and dynamical
complexity of networks. IEEE TIT 62, 6 (2016), 3290–3339.

[28] Yixuan Li, Kun He, Kyle Kloster, David Bindel, and John Hopcroft. 2018. Local
spectral clustering for overlapping community detection. ACM Transactions on
Knowledge Discovery from Data 12, 2 (2018), 1–27.

[29] Meilian Lu, Zhenglin Zhang, Zhihe Qu, and Yu Kang. 2018. LPANNI: Overlapping
community detection using label propagation in large-scale complex networks.
IEEE Transactions on Knowledge and Data Engineering 31, 9 (2018), 1736–1749.

[30] Xin Luo, Zhigang Liu, Mingsheng Shang, Jungang Lou, and MengChu Zhou.
2020. Highly-accurate community detection via pointwise mutual information-
incorporated symmetric non-negative matrix factorization. IEEE Transactions on
Network Science and Engineering 8, 1 (2020), 463–476.

[31] Artem Lutov, Mourad Khayati, and Philippe Cudré-Mauroux. 2019. Accuracy
evaluation of overlapping and multi-resolution clustering algorithms on large
datasets. In 2019 IEEE International Conference on BigComp. IEEE, 1–8.

[32] Tianshu Lyu, Lidong Bing, Zhao Zhang, and Yan Zhang. 2020. Fox: fast overlap-
ping community detection algorithm in bigweighted networks. ACMTransactions
on Social Computing 3, 3 (2020), 1–23.

[33] Jun Ma, Jenny Wang, Laleh Soltan Ghoraie, Xin Men, Benjamin Haibe-Kains,
and Penggao Dai. 2019. A comparative study of cluster detection algorithms
in protein–protein interaction for drug target discovery and drug repurposing.
Frontiers in pharmacology 10 (2019), 109.

[34] Ichcha Manipur, Maurizio Giordano, Marina Piccirillo, Seetharaman Parashu-
raman, and Lucia Maddalena. 2021. Community detection in protein-protein
interaction networks and applications. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 20, 1 (2021), 217–237.

[35] Béatrice Mazoyer, Julia Cagé, Nicolas Hervé, and Céline Hudelot. 2020. A french
corpus for event detection on twitter. In Proceedings of the 12th language resources
and evaluation conference. 6220–6227.

[36] Aaron F McDaid, Derek Greene, and Neil Hurley. 2011. Normalized mutual in-
formation to evaluate overlapping community finding algorithms. arXiv preprint
arXiv:1110.2515 (2011), 1–3.

[37] Andrew J McMinn, Yashar Moshfeghi, and Joemon M Jose. 2013. Building a
large-scale corpus for evaluating event detection on twitter. In Proceedings of the
22nd ACM CIKM. 409–418.

[38] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering
the overlapping community structure of complex networks in nature and society.
nature 435, 7043 (2005), 814–818.

[39] Hao Peng, Jingyun Zhang, Xiang Huang, Zhifeng Hao, Angsheng Li, Zhengtao
Yu, and Philip S. Yu. 2024. Unsupervised Social Bot Detection via Structural
Information Theory. ACM Transactions on Information Systems 42, 6 (2024).

[40] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear
time algorithm to detect community structures in large-scale networks. Physical
Review E—Statistical, Nonlinear, and Soft Matter Physics 76, 3 (2007), 036106.

[41] Sara Rahiminejad, Mano RMaurya, and Shankar Subramaniam. 2019. Topological
and functional comparison of community detection algorithms in biological
networks. BMC bioinformatics 20 (2019), 1–25.

[42] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. In Proceedings of EMNLP 2019. 3982–3992.

[43] Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu,
Cecile Paris, Surya Nepal, Di Jin, Quan Z. Sheng, and Philip S. Yu. 2024. A
Comprehensive Survey on Community Detection With Deep Learning. IEEE
Transactions on Neural Networks and Learning Systems 35, 4 (2024), 4682–4702.

[44] Li Sun, Zhenhao Huang, Hao Peng, YuJie Wang, Chunyang Liu, and S Yu Philip.
2024. LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph
Clustering. In Forty-first International Conference on Machine Learning. 1–26.

[45] VA Traag, L Waltman, and NJ van Eck. 2019. From Louvain to Leiden: guarantee-
ing well-connected communities. Scientific Reports 9 (2019), 5233.

[46] Vincent A Traag and Lovro Šubelj. 2023. Large network community detection by
fast label propagation. Scientific Reports 13, 1 (2023), 2701.

[47] Vincent A Traag, Paul Van Dooren, and Yurii Nesterov. 2011. Narrow scope for
resolution-limit-free community detection. Physical Review E 84 (2011), 016114.

[48] Hadrien Van Lierde, Tommy WS Chow, and Guanrong Chen. 2019. Scalable
spectral clustering for overlapping community detection in large-scale networks.

https://arxiv.org/abs/2404.16130

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S. Yu

IEEE Transactions on Knowledge and Data Engineering 32, 4 (2019), 754–767.
[49] Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. 2013. Overlapping

community detection using seed set expansion. In Proceedings of the 22nd ACM
CIKM. 2099–2108.

[50] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. 2013. Overlapping com-
munity detection in networks: The state-of-the-art and comparative study. Acm
computing surveys 45, 4 (2013), 1–35.

[51] Jierui Xie, Boleslaw K Szymanski, and Xiaoming Liu. 2011. Slpa: Uncovering
overlapping communities in social networks via a speaker-listener interaction
dynamic process. In 2011 IEEE 11th international conference on data mining work-
shops. IEEE, 344–349.

[52] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth ACM
international conference on Web search and data mining. 587–596.

[53] Runze Yang, Hao Peng, Chunyang Liu, and Angsheng Li. 2024. Incremental
measurement of structural entropy for dynamic graphs. Artificial Intelligence 334
(2024), 104175.

[54] Guangjie Zeng, Hao Peng, Angsheng Li, Jia Wu, Chunyang Liu, and S Yu Philip.
2024. Scalable semi-supervised clustering via structural entropy with different
constraints. IEEE Transactions on Knowledge and Data Engineering (2024).

[55] Xingwang Zhao, Jiye Liang, and Jie Wang. 2021. A community detection algo-
rithm based on graph compression for large-scale social networks. Information
Sciences 551 (2021), 358–372.

[56] Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chun-
yang Liu, and Philip S Yu. 2023. Se-gsl: A general and effective graph structure
learning framework through structural entropy optimization. In Proceedings of
the ACM Web Conference 2023. 499–510.

A GLOSSARY OF NOTATIONS
Notations used in this paper, along with their corresponding de-
scription, are presented in Table 5.

B STRUCTURAL ENTROPY
SE is defined on an encoding tree, where the encoding tree T of
a graph 𝐺 = (V, E) represents a hierarchical partition of 𝐺 and
satisfies the following conditions:
(1) Each node 𝛼 in T corresponds to a subset of nodes𝑇𝛼 ⊆ V . The

root node 𝜆 of T contains the entire set of nodes, i.e., 𝑇𝜆 = V .
Each leaf node 𝛾 in T is associated with exactly one node from
the graph 𝐺 , meaning 𝑇𝛾 = {𝑥}, where 𝑥 ∈ V .

(2) For each node 𝛼 in T , denote all its children as 𝛽1, . . . , 𝛽𝑘 , then
𝑇𝛽1 , . . . ,𝑇𝛽𝑘 is a partition of 𝑇𝛼 .

(3) For each node 𝛼 in T , denote its height as ℎ(𝛼). Let ℎ(𝛾) = 0
and ℎ(𝛼) = ℎ(𝛼) + 1, where 𝛼 is the parent of 𝛼 . The height of
T , ℎ(T) = max

𝛼∈T
ℎ(𝛼).

The SE of graph 𝐺 on encoding tree T is defined as:

HT (𝐺) =
∑︁

𝛼∈T ,𝛼≠𝜆

𝑔𝛼

𝑣𝑜𝑙 (𝜆) log
𝑣𝑜𝑙 (𝛼)
𝑣𝑜𝑙 (𝛼) , (15)

where 𝑔𝛼 is the summation of the degrees of the cut edges of T𝛼 .
𝑣𝑜𝑙 (𝛼), 𝑣𝑜𝑙 (𝛼), and 𝑣𝑜𝑙 (𝜆) represent the volumes of T𝛼 , T𝛼 and T𝜆 ,
respectively. The 𝑑-dimensional SE of 𝐺 is realized by acquiring an
optimal encoding tree of height 𝑑 , in which the disturbance derived
from noise or stochastic variation is minimized:

H(𝑑) (𝐺) = min
∀T :ℎ (T)=𝑑

{HT (𝐺)}. (16)

C PROOF OF THE ΔL(𝑥, C) COMPUTATION
FORMULA

Suppose the original partition is P = {C1, C2, . . . , C𝑘 } and when
node𝑥 leaves C𝑘 , forming a new partitionP ′ = {C1, C2, . . . , C′𝑘 , {𝑥}},

where C𝑘 = C′
𝑘
∪ {𝑥}. T ′ and T are encoding tree according to P ′

and P , 𝜆 is the root node of the encoding tree of graph 𝐺 .

Δ𝐿 (𝑥, C) = H2 (P) −H2 (P ′)

= −
∑︁

𝛼∈T ,𝛼≠𝜆

𝑔𝛼

𝑣𝜆
log

𝑣𝛼

𝑣𝛼
+

∑︁
𝛼 ′∈T ′,𝛼 ′≠𝜆

𝑔𝛼 ′

𝑣𝜆
log

𝑣𝛼 ′

𝑣𝛼 ′

=−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
−

∑︁
𝑥𝑖 ∈C𝑘\{𝑥 }

𝑑𝑥𝑖

𝑣𝜆
log

𝑑𝑥𝑖

𝑣c𝑘︸ ︷︷ ︸
H2 (C𝑘\{𝑥 })

−𝑑𝑥
𝑣𝜆

log
𝑑𝑥

𝑣c𝑘︸ ︷︷ ︸
H2 (𝑥)

+
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
+

∑︁
𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆
log

𝑑𝑥𝑖

𝑣c′
𝑘︸ ︷︷ ︸

−H2 (C′
𝑘
)

+𝑑𝑥
𝑣𝜆

log
𝑑𝑥

𝑣𝜆︸ ︷︷ ︸
−H2 ({𝑥 })

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆
(log

𝑑𝑥

𝑣𝜆
− log

𝑑𝑥

𝑣c𝑘
)

+
∑︁

𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆
(log

𝑑𝑥𝑖

𝑣c′
𝑘

− log
𝑑𝑥𝑖

𝑣c𝑘
)

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆

+ log
𝑣c𝑘

𝑣c′
𝑘

∑︁
𝑥𝑖 ∈C′𝑘

𝑑𝑥𝑖

𝑣𝜆

=
𝑔c′

𝑘

𝑣𝜆
log

𝑣c′
𝑘

𝑣𝜆
−
𝑔c𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣𝜆
+ 𝑑𝑥
𝑣𝜆

log
𝑣c𝑘

𝑣𝜆
+
𝑣c′

𝑘

𝑣𝜆
log

𝑣c𝑘

𝑣c′
𝑘

(17)

where, 𝑑 in𝑥 denotes the sum of edges from node 𝑥 to nodes 𝑥 𝑗 ∈
C𝑘 . Since the 𝑣c𝑘 , 𝑔c𝑘 and 𝑑 in𝑥 can be cached during the algorithm
iterations:

𝑣c′
𝑘
= 𝑣c𝑘 − 𝑑𝑥 , 𝑔c′

𝑘
= 𝑔c𝑘 − 2 ∗ 𝑑 in𝑥 + 𝑑𝑥 . (18)

D EVALUATION METRICS.
Given a ground truth community C ⊆ V and a reconstructed com-
munity C′ ⊆ V , the precision 𝑃 (C′, C) and recall 𝑅(C′, C) are de-
fined as follows:

𝑃 (C′, C) = |C ∩ C
′ |

|C′ | , 𝑅(C′, C) = |C ∩ C
′ |

|C | . (19)

Precision represents the fraction of the reconstruction in the ground
truth, while recall represents the fraction of the ground truth in
the reconstruction. These notions are often combined into a single
number between 0 and 1, known as the 𝐹1-score, defined as:

𝐹1 (C′, C) = 2 · 𝑃 (C
′, C) · 𝑅(C′, C)

𝑃 (C′, C) + 𝑅(C′, C) . (20)

The 𝐹1-score has the additional advantage of being symmetric, i.e.,
𝐹1 (C′, C) = 𝐹1 (C, C′), and it equals 1 if and only if the sets C and
C′ are identical.

To evaluate the set of detected clusters, we define the 𝐹1 score
for a collection of ground truth communities P and a collection
of detected communities P ′ [31, 52]. The F1-score for detection is
calculated as the average of two values: the F1-score of the best-
matching ground-truth community for each detected community,

Community Detection in Large-Scale Complex Networks via Structural Entropy Game WWW ’25, April 28–May 2, 2025, Sydney, Australia.

Table 5: Glossary of Notations.

Notation Description

𝐺 Network or graph
V Nodes (vertices) in network 𝐺
E Edges (links) in network 𝐺
P A set of communities of network 𝐺
𝐶𝑖 The 𝑖-th community in P
𝑆𝑖 The strategy of the node (player) 𝑖

𝑠
A strategy profile combines the strategies chosen
by all the players in the game

𝑢𝑖 The payoff function of player 𝑖
𝜑 A potential function in the potential game

T An encoding tree of the graph 𝐺
𝛼 A node in the encoding tree T
𝛼 The parent node of the node 𝛼 in the encoding tree
𝜆 The root node of the encoding tree T
𝑇𝛼 A set of vertices in the encoding tree node 𝛼
ℎ(𝛼) The height of the tree node 𝛼

H(𝐺) The structural entropy (SE) of graph 𝐺 on
the encoding tree

H(𝑑) (𝐺) The 𝑑-dimensional structural entropy of 𝐺
H2 (P) The 2D structural entropy of the graph partition P
𝑔𝛼

The summation of the degrees (weights) of the cut
edges of 𝑇𝛼

𝑑𝑥 The degree of the node 𝑥 in the graph 𝐺

𝑣𝛼 , 𝑣𝛼 , 𝑣𝜆
The summation of the degrees (weights) of encoding
tree nodes, 𝛼 , 𝛼 , and 𝜆

ΔS,ΔL,ΔT
Heuristic functions for strategies: Stay, Leave and
be alone, and Transfer to another community

ΔO Heuristic function for overlapping nodes

𝜏𝑛 , 𝜏𝑜 , 𝛾
The termination threshold, the overlap threshold,
and the overlap factor

and the F1-score of the best-matching detected community for each
ground-truth community:

𝐹1 (P ′,P) =
1
2

(
1
|P ′ |

∑︁
C′∈P ′

max
C∈P

𝐹1 (C′, C)

+ 1
|P |

∑︁
C∈P

max
C′∈P ′

𝐹1 (C, C′)
)
.

(21)

We also use theOverlappingNormalizedMutual Information (ONMI)
based on information theory developed by Lancichinetti and Fortu-
nato [25] and later refined by McDaid et al. [36].

ONMI(P ′,P) = 𝐼 (P ′,P)
max(𝐻 (P ′), 𝐻 (P)) , (22)

where 𝐻 (P) is the Shannon entropy of P , and 𝐼 (P ′,P) is the mu-
tual information. It is important to note that the difference between
NMI and ONMI lies in that nodes in P and P ′ only belong to a
single community. For the specific calculation formula, refer to
literature [36]. F1 measures the node-level detection performance,
while NMI aims at the community-level detection performance.
These values are in [0, 1], with 1 representing perfect matching.

E DATASETS
We conduct comprehensive experiments on nine real-world, large-
scale networks, which are described in detail as follows:

• Amazon. The Amazon network is constructed by crawling the
Amazon website. If a product 𝑖 is frequently co-purchased with
product 𝑗 , the graph contains an undirected edge from 𝑖 to 𝑗 . Each
product category provided by Amazon defines a ground-truth
community.
• YouTube. YouTube is a video-sharing website that includes a so-
cial network where users can form friendships and create groups
that other users can join. These user-defined groups are consid-
ered ground-truth communities.
• DBLP. DBLP is a co-authorship network where two authors are
connected if they have published at least one paper together.
Publication venues, such as journals or conferences, define indi-
vidual ground-truth communities; Authors who have published
in a specific journal or conference form a community.
• LiveJournal. LiveJournal is a free online blogging community
where users can declare friendships with each other. User-defined
friendship groups are considered ground-truth communities.
• Orkut. Orkut is a free online social networkwhere users can form
friendships and create groups that other members can join. These
user-defined groups are considered ground-truth communities.
• Friendster. Friendster is originally a social networking site
where users can form friendships and create groups. It later tran-
sitioned into an online gaming platform. User-defined groups are
considered ground-truth communities
• Wiki. Wiki is a directed overlapping network constructed based
on Wikipedia’s hyperlink data from September 2011. This net-
work includes page names and corresponding category informa-
tion, where each article may belong to multiple categories. These
categories can be considered as ground truth community labels.
• Tweet12. After filtering out duplicates and unusable tweets, the
dataset comprises 68,841 English tweets published over four
weeks in 2012, covering 503 distinct event types. In the con-
structed Tweet12 network, each node represents a tweet. We
utilize SBERT [42] to embed all tweets’ content and calculate the
cosine similarity between each pair of tweets. For each node, the
top 150 most semantically similar nodes are selected as neighbors.
Additionally, nodes are connected based on common attributes,
such as hashtags or users. The weight of each edge corresponds
to the cosine similarity of the embeddings between the connected
nodes.
• Tweet18. After filtering out duplicates and unusable tweets, the
dataset contains 64,516 French tweets published over 23 days in
2018, covering 257 types of events. The construction method for
the network of Tweet18 is identical to that of Tweet12.

F BASELINES
We compare CoDeSEG with four overlapping community detection
algorithms and four non-overlapping community detection algo-
rithms. All experiments are conducted on a server with a hardware
configuration of dual 16-core Intel Xeon Silver 4314 processors @
2.40GHz and 1024GB of memory. For CoDeSEG, we set the termina-
tion threshold 𝜏𝑛 and the overlap factor 𝛽 to 0.3 and 1, respectively.
The detailed descriptions of all baselines are as follows:

WWW ’25, April 28–May 2, 2025, Sydney, Australia. Yantuan Xian, Pu Li, Hao Peng, Zhengtao Yu, Yan Xiang, and Philip S. Yu

• SLPA is an overlapping community detection method based on
label propagation, designed to identify community structures in
networks by propagating labels between nodes. We implement
this algorithm in Python3.8 with the NetworkX package in CDlib,
with the number of iterations set to 21 and the filtering threshold
set to 0.01.
• Bigclam is an overlapping community detection method for
large networks based onNon-negativeMatrix Factorization (NMF),
which maximizes the likelihood estimate of the graph to find the
optimal community structure.We implement this algorithm using
open-source code, with the number of communities set to 25,000.
The code is available at https://github.com/snap-stanford/snap.
• NcGame is an overlapping community detection algorithm based
on non-cooperative game theory, which treats nodes as rational,
self-interested participants and aims to find communities that
maximize individual node benefits. We implement this algorithm
with python3.8 via open-source code supplied by the paper.
• Fox is a heuristic overlapping community detection method
that measures the closeness between nodes and communities
by approximating the number of triangles formed by nodes and
communities. We implement this algorithm using open-source
code available at https://github.com/timgarrels/LazyFox, with
the stopping threshold set to 0.1.
• Louvain is a community detection method based on modularity
optimization, which identifies non-overlapping community struc-
tures in networks through a multi-level optimization strategy.
We implement this algorithm in Python3.8 with API provided by
igraph library.
• DER is a diffusion entropy reduction graph clustering algorithm
with randomwalks and k-means for non-overlapping community
detection. We implement this algorithm in Python3.8 with the
NetworkX package in CDlib.
• Leiden is an improved version of the Louvain algorithm, which
enhances community detection accuracy and stability through
local optimization and refinement steps. We implement this al-
gorithm using open-source code available at https://github.com/
vtraag/leidenalg.
• FLPA is a fast variant of LPA [40] that is based on processing
a queue of nodes whose neighborhood recently changed. We
implement this algorithm in Python3.8 with API provided by
igraph library.

G VISUALIZATION
To intuitively assess the quality of community detection across var-
ious algorithms, we visualize the network consisting of the top 500
communities by node count from the Amazon dataset, comprising
13,132 nodes and 41,263 edges. For clarity, the top 100 communi-
ties are highlighted with distinct colors. As illustrated in Figure 6,
the detected communities by the proposed CoDeSEG closely align
with baselines NcGame and SLPA, exhibiting the highest similarity
to the ground truth. In contrast, the results of Fox and Bigclam
display a higher proportion of gray nodes (i.e., nodes that do not
match ground truth assignments), with Fox showing the most sig-
nificant deviation from the ground truth communities. To clearly
demonstrate the detection performance of the CoDeSEG algorithm,
we visualize the detection results of various algorithms on the LFR

(a) Ground truth. (b) CoDeSEG. (c) Fox.

(d) NcGame. (e) SLPA. (f) Bigclam.

Figure 6: Community detection result visualization on Ama-
zon (top 500 communities). Light gray indicates community
nodes ranked beyond 100, while gray denotes nodes mis-
aligned with the ground truth.

(a) Ground truth. (b) CoDeSEG. (c) Fox.

(d) NcGame. (e) SLPA. (f) Bigclam.

Figure 7: Community detection result visualization on LFR
benchmark network.

benchmark network [26]. The constructed LFR benchmark network
comprises five communities, 100 nodes, and 977 edges. The visu-
alization in Figure 7 demonstrates that the detected communities
by CoDeSEG are almost identical to the ground truth. While Fox
accurately assigns most nodes to correct communities, it detects
more communities than the ground truth. NcGame and SLPA, on
the other hand, tend to assign most nodes to fewer communities.
Bigclam, in contrast, fails to assign some nodes to any community
(i.e., the gray nodes in Figure 7(f)), which are considered noise
or not part of any significant community. Overall, CoDeSEG con-
sistently delivers superior performance across different networks,
demonstrating enhanced stability and robustness.

https://github.com/snap-stanford/snap
https://github.com/timgarrels/LazyFox
https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Community Detection
	2.2 Community Formation Game
	2.3 Structural Entropy

	3 Methodology
	3.1 Structural Entropy based Heuristic Function
	3.2 Efficient computation of L(x, Ck)
	3.3 Community Detection Algorithm
	3.4 Time Complexity
	3.5 Parallelism Implementation

	4 Experiments
	4.1 Experimental Setups
	4.2 Main Results (RQ1)
	4.3 Efficiency of CoDeSEG (RQ2)
	4.4 Convergence of CoDeSEG (RQ3)
	4.5 Parallelization Study (RQ4)

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Glossary of Notations
	B Structural Entropy
	C Proof of the L(x, C) Computation Formula
	D Evaluation Metrics.
	E Datasets
	F Baselines
	G Visualization

